96 research outputs found

    Integrating GHS into the Ghrelin System

    Get PDF

    Growth hormone response to growth hormone-releasing peptide-2 in growth hormone-deficient Little mice

    Get PDF
    OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormonereleasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/litmice, which represent a model of GH deficiency arising frommutated growth hormone-releasing hormonereceptors, were compared to those observed in the heterozygous (lit/&#43;) littermates and wild-type (&#43;/&#43;) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3±1.5 ng/ml was observed compared with 1.04±1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5±9.7 ng/ml and a higher growth hormone release of 163±46 ng/ml were induced in the lit/&#43; mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a

    Determinants of GH-releasing hormone and GH-releasing peptide synergy in men

    No full text
    Age, sex steroids, and abdominal-visceral fat (AVF) jointly affect pulsatile growth hormone (GH) secretion. Pulsatile GH secretion in turn is controlled by GH-releasing hormone (GHRH), GH-releasing peptide (GHRP), and somatostatin. Marked stimulation of pulsatile GH secretion is achieved via GHRH-GHRP synergy. Nonetheless, how key modulators of GH secretion, such as age, sex steroids, and body mass index, modify GHRH-GHRP synergy is not known. The present strategy was to 1) infuse GHRH and GHRP-2 simultaneously to evoke synergy and 2) downregulate the gonadal axis with leuprolide and then restore placebo (Pl) or testosterone (T) to clamp the sex steroid milieu. Forty-seven men [18–74 yr of age, T = 7–1,950 ng/dl, estradiol (E2) = 5–79 pg/ml, insulin-like growth factor (IGF)-I = 115–817 μg/l, AVF = 11–349 cm2] were studied. GHRH-GHRP synergy correlated negatively with age and AVF (both P < 0.001) and positively with IGF-I (P < 0.001) and IGF-binding protein (IGFBP)-3 (P = 0.031). Unstimulated basal (nonpulsatile) GH secretion correlated positively with T (P = 0.015) and E2 (P = 0.004) concentrations. Fasting pulsatile GH secretion varied negatively with age (P = 0.017) and positively with IGF-I (P = 0.002) and IGFBP-3 (P = 0.001). By stepwise forward-selection multivariate analyses, AVF, IGF-I, and IGFBP-3 together explained 60% of the variability in GHRH-GHRP synergy (P < 0.001), E2 accounted for 17% of the variability in basal GH secretion (P = 0.007), and IGF-I explained 20% of the variability in fasting pulsatile GH secretion (P = 0.002). In conclusion, a paradigm examining GHRH-GHRP synergy under a sex steroid clamp reveals highly selective control of basal, pulsatile, and synergistic peptide-driven GH secretion by AVF, E2, and IGF-I in healthy men
    • …
    corecore